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CHAPTER 1

INTRODUCTION

Materials and their development are fundamental to society. Major historical periods of 

society are ascribed to materials (i.e., stone age, bronze age, iron age, steel age, silicon 

age and silica age). Scientists will open the next societal frontiers not by understanding a 

particular material, but rather by understanding and optimizing the relative contributions 

afforded by material combinations. 

The nanoscale and associated nanoscience and technology afford opportunities to create 

revolutionary material combinations. These new materials circumvent classic material 

performance trade-offs by accessing new properties and exploiting synergism between 

materials. 

Major enhancements in mechanical, rheological, dielectric, optical, and other properties 

of polymer materials have been achieved by additives such as carbon black, talc, silica, 

and other inexpensive, inorganic materials. Nanofillers such as nanotubes, silica beads 

and cages, and clays, offer phenomenal advantages over these more traditional fillers 

because greater property improvement is achieved with far less material. For example, 

adding 1% by weight of ultra-fine, synthetic mica (30-nm diameter disks) to
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 nylon gives super-tough nylon, while adding the same amount of traditional mica 

(micron-sized talc) gives only a slight improvement in toughness over the unfilled 

polymer. [1]

Major advances in the design and fabrication of new materials that are lightweight and 

high strength will come from advances in the fundamental understanding of 

nanocomposites, in which nanoscopic fillers are dispersed on nanometer scales within the 

polymer matrix. The growing ability to design customized nanofillers of arbitrary shape 

and functionality provides an enormous variety of possible property modifications by 

introducing specific heterogeneity at the nanoscale. However, little is known about the 

specific influence of nanofillers on the polymers surrounding them, and thus the 

development of highly designed, nanostructured materials for specific applications is 

currently limited. Future breakthroughs in the development of organic/inorganic hybrid 

nanocomposites will be possible by manipulating the inorganic phase on nanometer 

scales in order to achieve specific properties. Achieving such capability will require 

insight on many length scales, ranging from the interfacial interactions on molecular 

scales, to the ordering and assembly of inorganic phases on lengths scales from several 

tens of nanometers to tens of microns, to the manifestation of bulk material properties on 

macroscopic scales. Computer simulation is securely an important tool in materials 

discovery and optimization, and in interpreting and guiding experiments to probe and 

manipulate these materials on molecular scales

One of the most successful commercial uses of nanoparticles is as fillers in plastics [2].  

Properties such as strength can be improved by including a small weight percent 

(typically less than 5%) of the filler, and significant current research is focused on 
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improving the chemical compatibility between the filler and the polymeric matrix.  In this 

environment, if the amount of the filler and the polymer become compatible, then the 

roles of the filler and the matrix can be reversed, and if the filler, or one of its forms, has 

useful properties of its own, then those properties can be improved by ‘doping’ with a 

polymer [3].

The most common filler is silica, and a form of silica, the silica aerogel, is a very low 

density chemically inert material with low thermal conductivity, excellent acoustic 

insulation properties and a highly interconnected porosity. These properties would render 

aerogels very desirable for numerous applications, but they have one serious drawback 

that has prevented their wide industrial, commercial and aerospace use: they are fragile 

materials, and thus they have seen only very limited use in specialized applications, for 

example as Cherenkov radiation detectors in certain types of nuclear reactors [4], in the 

Stardust program for capturing hypervelocity particles in space [5], and for thermal 

insulation aboard certain short-lived planetary vehicles such as the Sojourner Rover on 

Mars in 1997 [6].  Meanwhile, all future space Exploration Systems Research and 

Technology will rely decisively on weight reduction and multifunctional materials. Thus, 

if the excellent thermal insulating properties of aerogels can be combined with 

mechanical strength, aerogels will be ideal dual-function materials in this endeavor.

Aerogels are porous materials derived via a sol-gel process in combination with a 

subsequent drying step; the results are monolithic, open, porous materials with a 

backbone morphology that can be modeled in terms of three dimensionally 

interconnected strings of pearls. One of the significant advantages of aerogels compared 

to other porous materials is that both porosity and inner surface area can be tuned 
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independently. Porosities of up to 99.9 % are achievable; when micro porosity (IUPAC 

definition: pores < 2nm) is present, the specific surface area (BET) can exceed 1500 

m2/g. The length scale of both the “pearls” as well as the interconnected voids can be 

independently tailored over a wide range, i.e. from a few nanometers to several microns

The combination of such an extensive range of unusual material properties enables the 

application of aerogels in many different areas of technology. Some of these areas are 

presented in Figure 1

Figure 1 Applications of aerogel in various fields Reference: [7]
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1.1 Thesis Outline

In Chapter 1, an introduction to nanostructured materials is presented. Chapter 2 is a 

literature review of work done previously by other researchers on testing and modeling of 

aerogels. Chapter 3 describes the procedures for preparation of monolithic crosslinked 

silica aerogel. Chapter 4 presents the experimental procedures used in characterization of 

silica aerogel. Chapter 5 describes the steps involved in modeling of aerogel. It explains 

the structure of silica aerogel, the diffusion limited cluster aggregation algorithm for 

generating the structure of the silica aerogel and the particle flow code (PFC3D) theory. 

Chapter 6 discusses results obtained from characterization tests and numerical modeling. 

Chapter 7 lists the conclusions based on the current study and discusses the scope for 

future study.
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CHAPTER 2

LITERATURE SURVEY

Silica aerogels are brittle materials like glasses or ceramics. Their mechanical strength is 

very poor (less than 1 MPa) owing to their large pore volume. Nevertheless, knowledge

of their mechanical properties is of interest for technical applications (Cherenkov 

detector, thermal insulator, host matrix) as well as for theoretical research. Many 

researchers have used different techniques for tailoring the properties of silica aerogel for 

specific applications. Experimental as well as simulations and analytical studies have 

been performed.

Woigner et al [8] conducted three-point bend and diametral compression tests on silica 

aerogel samples. The aerogels were obtained from tetramethoxysilane (TMOS), by 

hypercritical evacuation of the solvent. The stress-strain curve obtained showed a 

perfectly elastic behavior and “conchoidal” fracture morphology Based on the fracture 

morphology the material was predicted to be as brittle as a conventional glass. The 

bending strength (σB) of aerogels was found to be greater than the corresponding strength 

in diametral compression (σDC) with σB/σDC ratio approximately equal to two. The 
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mechanical strength of aerogel was observed to be function of the bulk density; aerogels 

with the highest density (400 kg/m3) revealing maximum flexural strength of 1 MPa.

Parmenter et al [9] investigated the mechanical behavior of silica aerogel using hardness, 

compression, tension and shear tests. The influences of testing conditions, storage 

environment and age were examined, with particular attention paid to the effects of 

processing parameters, including fiber-reinforcement. Good correlation was found 

between hardness and compressive strength over a wide range of processing parameters. 

Increasing fiber reinforcement generally retarded shrinkage during fabrication and 

yielded smaller matrix densities for a given target density. For a given fiber content, 

hardness, compressive strength and elastic moduli increased and strain at fracture 

decreased with increasing matrix density. In the lower ranges of matrix density, fiber 

reinforcement increased strain at fracture and elastic moduli. The mechanical response 

was also sensitive to environment and storage history. With age, the compressive strength 

and elastic moduli increased, while the strain at fracture decreased. Tension and shear 

results indicate that shear strength of aerogels exceeds tensile strength, which is 

consistent with brittle materials’ response.

Takahashi et al [10] investigated the bending strength of silica aerogel with bimodal 

pores. Silica gels with both macropores and mesopores were prepared from water glass 

by fixing the transitional structure of phase separation. The bending strength was 

investigated, at different calcination temperatures and ammonia concentrations in aging, 

by conducting three-point bend test on rectangular specimens. The strength was seen to 
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increase with increasing calcination temperatures and with decreasing ammonia 

concentrations. Strong correlation was found between bending strength and mesopore 

volume. The bending strength was seen to be monotonically decreasing with increasing 

mesopore volume, as long as the gel had similar macroporous morphology. However,

little correlation was observed between strength and structural parameters (such as pore 

diameter) of mesopores. The strength of the bimodal porous silica aerogel was predicted 

to be greater than that reported in the literature for silica aerogel with a similar porosity.

Martinez et al [11] investigated the response of silica aerogel to deformation by 

conducting microindentation. Mechanical properties such as hardness, Young’s modulus 

and elastic parameter were obtained by microindentation measurements carried out on a 

Nanotest 550 (Micro Materials) Indenter.  The effects of alkoxide concentration, solvent, 

drying procedure and carbon addition on mechanical properties were studied. The 

maximum applied load was 1mN and the maximum penetration depths were in the range 

2-7 µm with resolution better than 1µN and 1 nm, respectively.  With increase in alkoxide 

concentration, the density of aerogel increased, as did the hardness and Young’s 

modulus. The effect of solvent was studied by using two different solvents, acetone 

(sample A) and methanol (sample B), to yield samples of similar densities. Sample B was 

seen to be more elastic than sample A, resulting in higher Young’s modulus and lower 

elastic parameter as compared to sample A. The effect of drying procedure was studied 

by employing two different drying procedures, conventional high temperature 

supercritical extraction of acetone (sample X) and exchange of the acetone for carbon 

dioxide (sample Y). Shrinkage in sample Y was more pronounced, with sample Y being 



www.manaraa.com

9

harder and stiffer as compared to sample X. The effect of addition of small amount of 

activated carbon to the sol had a pronounced effect on the Young’s modulus of aerogel. A 

marked change was observed in the nature of load vs. penetration depth curves, as they 

changed their trend from that of elastoplastic materials to highly elastic materials.

Martin et al [12] investigated mechanical and acoustical properties of macroporous silica 

aerogels as a function of polyethylene glycol (PEG) concentration. Young’s modulus of 

silica aerogel was determined under uniaxial compression test and acoustical techniques. 

Mechanical properties, such as elastic coefficients, have been related to acoustic velocity 

using experimentally matched scaling laws.  From both tests, they were able to get good 

correlation for the Young’s modulus. The properties exhibited a large change when a 

small concentration of PEG was added to the initial sol. The stress-strain curve showed 

an initial linear elastic region, followed by a smooth transition to plastic region. They 

loaded the sample to 75% of its elastic limit and unloaded it to zero, three times and then 

loaded it to approximately 150% of its elastic limit to examine the linear recoverability of 

the silica aerogel. Beyond the elastic limit, the aerogel followed a different unloading 

curve due to permanent deformation.

The sub-critical crack growth domain in hydrophilic silica aerogel was studied using the 

Double-Cleavage-Drilled-Compression test (DCDC) [13]. The effects of temperature and 

water vapor content on the crack growth rate were measured. The experiments were 

carried out between 295 ˚K and 383 ˚K with air moisture ranging from 5 % to 80 % RH. 

Like dense silica, crack growth velocities were found to decrease when increasing the 

temperature at a constant water vapor concentration. Surprisingly, the crack velocity also 



www.manaraa.com

10

decreased with increasing water vapor content at constant temperature. Such a behavior is 

contrary to the expected results usually encountered in glasses. An analogy with nitrogen 

adsorption experiments on the same aerogels was used to explain this behavior. It was 

assumed that a capillary condensation phenomenon of water vapor inside the aerogel 

porosity occurred, inducing internal compressive stresses

Isostatic compression of silica aerogels is known to allow densification of these highly 

porous aerogel materials. However, at the onset of compression, hydrophobic and 

consequently slightly reacting aerogels exhibit a decrease in bulk modulus, as reported by 

Perin et al. [14]. This unusual behavior is associated with damage occurring at low 

pressures, which recovers with further increase in densification. Damage development 

and healing were analyzed measuring elastic modulus and, for the first time, internal 

friction as a function of compression. It was proposed that the origin of damage and 

healing could be associated with the rupture of tenuous links between clusters of dense 

silica particles at low density levels, and with the creation of new links between the 

resulting arms and reacting species that are revealed at cluster interface under higher 

pressure. It was also reported that a peak occurs in the internal friction of the aerogel at 

around 5 MPa pressure, indicating good damping characteristics under blast and/or 

impact loading. 

Scherer et al [15] studied the compression of aerogel using mercury porosimetry. When 

aerogel was pressurized in a mercury porosimeter, the network got compressed, but no 

mercury entered the pores. Thus, porosimetry was employed to provide a measure of the 
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bulk modulus of the network. They observed that the silica aerogel, was linearly elastic 

under small strains, and then exhibited yielding followed by densification and plastic 

hardening.  Power law relationships were fitted in linear elastic and plastic regimes. In 

the plastic regime, it was found that the bulk modulus has a power-law dependence on 

density with an exponent of 3.2. For the same gels, the linear elastic modulus (before 

compression) also obeyed a power law, but the exponent is = 3.6. If the aerogel is 

compressed to a pressure, P1, that exceeds its yield stress, and then returned to ambient 

pressure, the plastic deformation is irreversible; if the same aerogel is then compressed to 

pressure P2 (P2 is greater than P1), it behaves elastically up to P1, then yields and follows 

the same power-law curve.

Miner et al [16] studied the effect of humidity on Young’s modulus and non-recoverable 

strain for hygroscopic silica aerogel. The samples were tested in a controlled humidity 

chamber with the RH varied from 32% to 70%, beyond which the samples failed 

catastrophically. The mass gains over the desiccated condition varied from 4% at 32%RH 

to 12% for 70% RH. There was a slight increase in Young’s modulus from 0.51 to 0.70 

MPa and the non-recoverable strain increased from 0.047 to 0.059 over the studied 

humidity range. The yield stress did not show a significant change. 

Gross et al [17] investigated the mechanical behavior of silica aerogels using ultrasonic 

and static compression experiments.  The frequency employed for ultrasonic experiments 

was varied from 50kHz to 1 MHz. The mechanical behavior was investigated in this 

frequency domain as a function of internal and external gas pressure. The measurement 

of longitudinal and transverse sound velocities allowed the Young’s modulus and 
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Poisson’s ratio for aerogels of different densities to be determined upon the variation of 

internal and external pressures. From static compression tests it was determined that the 

low density aerogel display creep with a time constant of about 45 min.

The mechanical structure-property relationship of high-porosity materials, such as 

aerogels is not well understood. Modeling of mechanical the structure-property 

relationship for silica aerogel has been attempted by researchers [18, 19].  It has been 

shown that low-density aerogel materials exhibit a scaling relationship between their 

elastic modulus (E) and density (ρ) according to the relation E ∝ ρm, where m is the 

scaling exponent. Typically the value of m for aerogels is greater than 2, which means 

that porous aerogels are orders of magnitude more compliant than their solid components. 

The general consensus is that there exists dangling mass – branches that hang off the 

main backbone of the network and do not bear load, and therefore the exponent is raised 

above 2. There are some qualitative explanations for the large m, including the effect of 

small neck-to-particle ratio, tortuosity cleavage of bonds under stress and reformation of 

new bonds. Unfortunately, a systematic study linking the scaling relationship to the 

microstructure of the gel network has not been conducted for crosslinked silica aerogel.  

The problem is that the elastic properties are controlled by the connectivity of the 

network, and there are no good experimental tools for measuring or quantifying it. 

Consequently, computer simulation is the most feasible approach to understanding the 

mechanical structure-property relationship of aerogels.   
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Gavalda et al [20] presented a molecular model for carbon aerogel. The aerogel studied in 

their work was mesoporous and had carbon particles having a diameter of ~6 nm, 

connected in an open-cell structure with a porosity of ~0.55. This structure was prepared 

by first generating a random close-packed structure of slightly overlapping spheres, 

followed by random removal of spheres to match the targeted porosity. Structural 

characteristics of the model have been studied using different Monte Carlo (MC) 

techniques and they compare well with those for the laboratory material. Nitrogen 

adsorption in their aerogel model was studied using a parallelized Grand Canonical 

Monte Carlo algorithm based on a domain-decomposition scheme. Adsorption occurs in 

the micropores at very low pressure, followed by adsorption in the mesopores, with 

capillary condensation occurring at the higher pressures.
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CHAPTER 3

PROCESSING OF CROSSLINKED SILICA AEROGEL

Base-catalyzed silica aerogels consist of large voids called mesopores (~50 nm) in a 

“pearl necklace” of microporous secondary particles, as shown in Figure 2(a). These 

secondary particles are connected by “necks” formed by dissolution and reprecipitation 

of silica during aging. Consequently, it is reasonable to assume that the mechanical 

strength of monolithic aerogels can be improved by making the necks wider as shown in 

Figure 2(b). To accomplish this, the contour surface of the silica is used as a template for 

the deposition and growth of an inter-particle cross-linker.

Figure 2 Schematic diagram of aerogel (a) before and (b) after crosslinking.  
Reference: [21]
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There are, currently, a variety of methods for silica aerogel synthesis. The detail 

procedure used in preparation of silica aerogels in this study is described in the following 

paragraphs. (Synthesis method was developed by Leventis et al at NASA GRC [21])

The synthesis of aerogels, in general, involves two major steps, the formation of a wet 

gel, and the drying of the wet gel to form the aerogel. The preparation was wet gel was 

carried out at Oklahoma State University while, the drying of the wet gel was done at 

NASA Glenn research centre. The sol (sol is a solution of various reactants that are 

undergoing hydrolysis and condensations reactions) for the wet gels was prepared 

separately as two different solutions, namely solution “A” and solution “B”. Solution “A” 

is a mixture of 1.3 ml aminoproplyltriethoxysilane (APTES), 6 ml acetonitrile (CH3CN), 

and 3.85 ml tetramethoxysilane (TMOS), whereas solution “B” is a combination of 6 ml 

acetonitrile (CH3CN) and 2 ml deionised water (H2O). A mixture of dry ice and acetone 

was prepared and both the solutions were cooled separately in that mixture (mixture 

temperature –78 οC) for about a minute. After cooling, solution “A” was poured into 

solution “B” and the mixture was agitated. The resulting sol was then poured into a mold 

of the desired shape. The mixture solidified in about a minute and the mold was covered 

with two layers of parafilm, to prevent the gel from drying. The sol was allowed to age in 

the mold till the gel point (the point at which the network of linked oxide particles span 

the container holding the sol) is reached. At the gel point, the sol forms a rigid substance 

called alcogel. The alcogel was gently removed from the mold and immediately 

transferred to a jar containing acetonitrile. 

The acetonitrile in the jar was changed after a period of 24 hours for three days. After this 

period, the samples were removed from acetonitrile jars and were ready for crosslinking. 
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The alcogel samples were crosslinked with di-isocyanate (Desmodur N3200) as the 

crosslinker and acetonitrile as the crosslinking solvent. This is a critical step in the 

formation of crosslinked silica aerogel. A mixture of desmodur N3200 (32.9 gm) and 

acetonitrile (82ml) was prepared and vigorously shaken to ensure proper mixing to form 

a homogenous solution. The alcogel samples were then transferred carefully to the above 

mixture and allowed to equilibrate for 24 hours, with frequent agitation. At the end of the 

period, the samples were removed from the crosslinking bath and were placed in a 

container with fresh CH3CN and were placed in an oven (maintained at a temperature of 

70oC) for 3 days. The samples were then removed and allowed to cool to room 

temperature, the crosslinking solution was decanted, and samples were washed four times 

with acetonitrile. The last major step in preparation of crosslinked silica aerogel, 

supercritical drying, was done at NASA Glenn research center.  Supercritical drying is a 

process where the liquid within the gel is evaporated, leaving behind only the 

mesoporous silica network.  The process is performed by prior solvent exchange with 

CO2 followed by supercritical venting of the alcohol (lower temperatures-less dangerous). 

Figure 3 shows the schematic representation of the steps involved in preparation of silica 

aerogel.
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Figure 3 Schematic representation of the synthesis of di-isocyanate 

crosslinked silica aerogel
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CHAPTER 4

MECHANICAL CHARACTERIZATION EXPERIMENTS

The aerogels prepared by the procedure described in Chapter 3 were characterized using 

different mechanical tests. The testing was carried out under different conditions to study 

their effects on the measured properties. Tests that were conducted are described as 

follows. 

4.1 Compression Tests

Compression tests were performed on cylindrical cross-linked silica aerogel (CSA) 

specimens, on a MTS machine equipped with a 55,000 lbs load cell. Specimens with 2:1 

height to diameter ratio were tested according to ASTM D790 standard. Five samples 

were each tested in uniaxial compression and their dimensions are tabulated in Table 1. 

The samples were sized at the ends using a 5200 rpm 10” compound power miter saw, 

followed by polishing of the cut surfaces on a fine belt grinder. The specimen was held 

between the platens of compression fixture, the top of which was held stationary whereas, 

the bottom platen was raised at the rate of 0.005inch/sec as shown in Figure 4. Solid 

graphite powder was used as a lubricant to reduce the friction between the platens and 

aerogel surface. The load and displacement data was recorded from Instron data 

acquisition console and was corrected for the machine compliance. Compression tests 



www.manaraa.com

19

were conducted at room temperature and lower temperatures of -27oC, -55 oC, and -196

oC. The samples were cooled in a freezer and liquid nitrogen dewar (Model B, Precision 

Cryogenics Systems, Inc, Indianapolis, IN) for 3 hours for tests conducted at -27 oC and -

55 oC respectively. The samples were then removed from their respective coolers and 

immediately tested in air within a span of 2 minutes. For test at -196 oC, the samples were 

directly immersed in liquid nitrogen for 30 minutes and immediately tested on the 

compression fixture at room temperature. Since silica aerogels has a low thermal 

conductivity (0.03-0.04 W/m˚K) [22], it was anticipated that that there was not a large 

rise in the temperature of specimens during the test. The samples were tested within two 

minutes, after their removal from the liquid nitrogen.

The load-displacement curves were converted to stress-strain curves by dividing the loads 

by the original cross-sectional areas of the specimen, and the displacements by the 

original height of each specimen respectively. The compressive strength, the strain at 

failure and the Young’s modulus values were extracted from the stress-strain curve. The 

strain at fracture is the strain at which the macroscopic failure of the specimen occurred. 

The influence of strain rate on compression of the samples was quantified by comparing 

the stress-strain curves at different strain rates. The samples were loaded at strains rates 

of 0.35 %, 3.5% and 35% per second. 

The effect of aging on the mechanical properties was measured by evaluating stress-strain 

curves for aerogel specimens having different storage history. Some compression 
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specimens were tested within a week of manufacture; some were tested after being stored 

in air environment under ambient conditions for approximately 5 weeks. 

Figure 4 Uniaxial compression testing setup

4.2 Flexural Tests

Three-point bending tests were performed on rectangular samples, as shown in Figure 5, 

using an INSTRON 4240 servo-hydraulic machine equipped with a 100 lb load cell and a 

PID servo controller. The crosshead speed was 2.54 mm/min and the fulcrums span was 

50mm. The tests were conducted at room temperature (21°C). The load and displacement 

readings were acquired using the NI LabView data acquisition software. The stress 

readings were calculated from the load readings using the flexural formula σ = My/I and 

the strain was measured at the bottom-most point using a relation derived from total 

strain energy principle, taking shear deformation into account. The bending stiffness and 

the bending strain at failure were determined from the stress-strain curve. The effect of 

temperature on silica aerogel bending strength was quantified by comparing stress-strain 

curves at room temperature (21°C), –196°C and 180°C. For the tests at -196oC, the 

samples were directly immersed in liquid nitrogen for 10 minutes and tested within two 

minutes, after they were removed from liquid nitrogen, on the bending fixture at room 
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temperature. As mentioned earlier, it was assumed that there was not a significant rise in 

the temperature of specimens during the test. 

The tests at 180°C were conducted on the bending fixture inside an Instron environmental 

chamber. Three samples were soaked at 180°C for six hours to ensure that thermal 

equilibrium has been reached. There was shrinkage in the sample dimensions and the 

surface morphology changed to a glassy material as shown in Figure 6. The dimensions 

of the samples and load-deflection curves are discussed in dicussion section

Figure 5 Flexural testing setup

Figure 6 Sample shrinkage and change in surface morphology of CSA sample at -
180C



www.manaraa.com

22

CHAPTER 5

MECHANICAL STRUCTURE-PROPERTY RELATIONSHIP 

OF SILICA AEROGEL

In this chapter, the steps involved in development of the numerical model are explained. 

Firstly, the structure of silica aerogel, as investigated from different characterizing 

techniques, is presented. Secondly, the diffusion limited cluster-cluster aggregation 

(DLCA) algorithm, used in the generation of the aerogel structure is described.  Thirdly, 

the outlying theory of particle flow code and the process of numerical modeling are 

described.

5.1 Structure of silica aerogel:

Aerogel is a class of monolithic materials that possesses porous structure. The 

mechanical, thermal, electrical and optical properties exhibited by aerogels are attributed 

to their nanoporous cluster assemblies. As previously mentioned the properties of 

aerogel, such as Young’s modulus are directly related to their structural parameters. 

Therefore, it’s of prime importance to investigate the micro-structural features of 

aerogels. Various research groups are actively engaged in revealing the complex 

structural feature of this highly compliant material.
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Scanning electron microscopy (SEM) [23] and transmission electron microscopy (TEM) 

[24] have been employed to produce a direct image of the nanoporous aerogel structure. 

Indirect imaging techniques, such as small angle x-ray scattering (SAXS) [25] and small 

angle neutron scattering (SANS) [26], are widely used to reveal the structural features of 

aerogels. Nuclear magnetic resonance spectroscopy (NMR) has also been used to 

examine the structural evolution of aerogels on the molecular level [27].A laser ablation 

technique, using time of flight method, was used by one such group to reveal the 

structure of aerogel [28]. The schematic sketch of their proposed aerogel structure is 

shown in Figure 7. For the crosslinked silica aerogel used in the present study, SEM 

imaging was conducted at Ohio aerospace institute and the structure under different 

magnifications is shown in Figure 8. In the figure, the clusters of secondary particles are 

clearly visible along with the nanopores. 

Figure 7 Schematic of silica aerogel structure as determined 

from laser ablation technique [Ref: 28]
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(a)

(b)

Figure 8 SEM images of crosslinked silica aerogels. The cluster of secondary 
particles (round particles) and the mesopore (dark spots) are clearly visible.

(Courtesy -Ohio Aerospace Institute)

(a) 500 nm magnification (b) 200 nm magnification
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The stiffer structure exhibited by aerogel depends on the connectivity of its network of 

particles in space. However, there is no experimental technique to measure the 

connectivity of the particles. Various researchers have developed different cluster 

aggregation algorithms for simulating the growth of aerogels such as diffusion limited 

cluster algorithm, reaction limited cluster algorithm [29, 30]. A diffusion limited cluster 

aggregation algorithm has been used in present study, as it is simple to implement and 

well characterized. It was developed to aid the interpretation of scattering experiments 

and subsequently has been employed to aid the understanding of phenomena related to 

porous media such as gelation, fractal studies, scattering spectroscopy.

5.2 Description of the DLCA algorithm

The DLCA algorithm proceeds with random filling of non-intersecting spheres inside a 

cubic volume. The diameters of these spheres are chosen from a Gaussian distribution 

function. These spheres are then set to diffuse inside the cubic boundary. When in 

motion, a particle (or cluster) is tested for overlap with neighboring particles. If an 

overlap is detected, then that particle is merged to the particle or cluster. The diffusive 

motion is completed once all the particles have merged to form a single cluster [30]. The 

process of aggregation is schematically explained in Figure 9. A cluster of three particles 

is moved and is tested for an overlap with neighboring particles as shown in Figure 9 (a). 

Once an overlap is detected this cluster is aligned to the particle as shown in Figure 9 (b). 

Then, this cluster and particle are merged to form a cluster with four particles as shown in 

Figure 9 (c). This process continues until all particles have merged to form a cluster. 

Figure 10 shows snapshots of the DLCA process developed using POV ray (persistence 
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of vision) software. 13800 particles are dispersed in a cubic volume of 400 nm in each 

dimension. Figure 10(a) shows the cubic volume filled with random non-intersecting 

spheres. These spheres put in Brownian motion. Figure 10(b) shows the spheres merged 

together to form a single cluster.

Figure 9 Process of aggregation of the particles [Ref: 31]
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Figure 10 (a) Non-intersecting spheres dispersed in a cubic volume (b) spheres put 
in diffusive motion to form cluster after the aggregation process [Ref: 31]
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5.3 Particle Flow Theory

A Particle Flow Code in three dimensions (PFC3D) models mechanical behavior by 

representing a solid as a bonded assembly of spherical particles. The modeling process is 

based on discrete element (also called distinct-element) theory. PFC models are 

categorized as direct, damage-type numerical models in which the deformation is not a 

function of prescribed relationships between stresses and strains, but of changing 

microstructure. The following sections describe general principles of the particle 

mechanics approach and the distinct element method and are based on PFC manuals 

published by Itasca (1999) [32].

5.3.1 Particle mechanics

PFC3D (Particle Flow Code in 3 Dimensions) is program for modeling the movement 

and interaction of assemblies of arbitrarily sized spherical (3D) particles. The model is 

composed of distinct particles that displace independently from one another and interact 

only at contacts between the particles. Newton’s laws of motion provide the fundamental 

relationship between particle motion and the forces causing the motion. Bonding the 

particles together at their contact points, and allowing the bond to break when the 

strength limit of the bond is exceeded, can model behavior that is more complex. In 

addition to spherical particles, i.e. balls, the PFC model also includes ‘walls’. The desired 

model is constructed from these two entities.
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5.3.2 Distinct Element Method

PFC models the movement and interaction of particles using the distinct element method 

(DEM). PFC is classified as a discrete element code because it allows finite 

displacements and rotations of discrete bodies and because it recognizes new contacts 

automatically. The program is a simplified implementation of the distinct element method 

because of the restriction to rigid spherical particles. In PFC, interactions between 

particles are treated as a dynamic process. Dynamic behavior in PFC is represented in 

numerical terms by a time-stepping algorithm which requires repeated application of the 

laws of motion to each particle, a force-displacement law to each point of contact, and a 

constant updating of wall position. The use of an explicit numerical scheme makes it 

possible to simulate the nonlinear interaction of a large number of particles, without the 

requirement for the computer equipment being used to have extensive memory.

5.3.3 Calculation cycle

The PFC calculation cycle is shown in Figure 11. At the start of each time step, the set of 

contacts is updated from the known particle and wall positions. The force displacement 

law is then applied to each contact to update the contact forces, and the law of motion is 

then applied to each particle to update its velocity and position.
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Figure 11 Calculation cycle in PFC3D; Reference [32]

5.3.4 Contact models

A contact model describes physical behavior at each contact. The constitutive model 

acting at a contact consists of a stiffness model, a slip model or a bonding model as 

shown in Figure 12. The stiffness model is an elastic relationship between force and 

displacement. The slip model introduces friction into contact behavior. Particles may also 

be bonded together at a contact (the bonding model). Two bonding models are supported 

in PFC. Both bonds can be described as the ‘gluing together’ of two particles. The 

contact-bond glue is of vanishingly small size and acts only at the contact point. The 

parallel-bond glue has a finite size and acts over a circular cross-section positioned 

between the particles. 

A contact bond provides each contact point with a tensile normal and shear contact-force 

strength. This allows a tensile force to develop between two particles. If the magnitude of 

the tensile normal or shear contact force exceeds the respective strength, the bond breaks. 

Two particles with a contact bond behave as though they are welded together at the 
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contact point; thus, no slip is possible while the bond remains intact. However a contact 

bond provides no resistance to rolling. Rolling is caused by an unbalanced moment acting 

at the contact point. The difference between the bonding models is that while the contact 

bond can only transmit a force, the parallel bond can also transmit moment. 

Figure 12 Types of contact models in PFC3D; Reference [32]

5.3.5 Choosing material properties for PFC3D models

In a general sense, one can characterize any model of a synthetic material by the 

parameters of deformability and strength. In order to have confidence that a particular 

model is reproducing desired physical behavior, it is necessary to relate each model 
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parameter to a set of relevant material properties. In the case of the PFC model, the model 

parameters cannot, in general, be related directly to a set of relevant material properties 

because the behavior of the PFC model is also affected by particle size and packing 

arrangement. The relation between PFC model parameters and commonly measured 

material properties is only known a priori for certain simple packing arrangements. For 

the general case of arbitrary packing of arbitrarily-sized particles, the relation is found by 

means of a calibration process in which a particular instance of a PFC model, with a 

particular packing arrangement and set of model parameters, is used to simulate a set of 

material tests (e.g., unconfined compression test, triaxial test, Brazilian test). The PFC 

model parameters are then chosen to reproduce the relevant material properties as 

measured in such tests.

5.3.6 Relation between Macro and Micro Properties

In order to create a synthetic material that exhibits a set of macroscopic responses that are 

independent of particle size, one must set the micro-properties of the PFC model using 

the relations described in this section. The micro-property-specification procedure 

requires relating the deformability and strength micro-parameters (particle and bond 

stiffnesses, particle friction coefficients and bond strengths) to their corresponding set of 

macro-responses (such as elastic constants, material friction angle and peak-strength 

envelope). The relations at the level of a single particle-particle contact are described 

subsequently by comparing either the behavior of a bond between two particles (for 

bonded material) or of the contact itself (for unbonded material) to that of an elastic beam 

with its ends at the particle centers. These relations provide a coherent set of micro-
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parameters that can be determined for a particular physical material by carrying out the 

calibration process. A flow chart for the calibration process is shown in Figure 14.

All of the following analyses relate the behavior of a contact between two particles to that 

of an elastic beam with its ends at the particle centers. The beam is loaded at its ends by 

the corresponding force and moment vectors acting at each particle center. The beam is 

characterized by geometric parameters of length (L), cross-sectional area (A) and 

moment of inertia (I); deformability parameters of Young’s modulus (E) and Poisson’s 

ratio (υ); and strength parameters of normal (σC) and shear (τC) strengths. The Young’s 

modulus of a particle-particle contact and a parallel bond are designated by Ec and Ep, 

respectively.

The particle contact stiffness, the contact coefficient of friction, and the contact bond 

model used between the individual particles govern the mechanical behavior of the intact 

material. PFC3D provides the following two equations that can be used to make first 

estimates of the particle stiffness and bond strength from values of the macro-mechanical 

parameters determined in laboratory experiments.

R

K
E n

4
= …………………………………… (1)

where E is the expected Young’s modulus of the particle assembly as obtained from 

laboratory tests, Kn is the normal stiffness of the particles and R is the particle radius, and

24R

Sn
t =σ ……………………………….…. (2)
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where σt is the measured tensile strength of the particle assembly and Sn is the normal 

bond strength between the particle contacts. The shear components of the stiffness and 

bond strength, Ks and Ss, are taken to be some fraction or equal to their respective normal 

components. The two relations are derived for a cubic array of particles, which may not 

be correct representations of the actual particle arrangement in the laboratory samples. 

Nevertheless, the equations do provide useful information that could be used in obtaining 

first estimates of the micro-mechanical parameters values. The first equation shows that 

the Young’s modulus, a macro-mechanical property, is inversely related to the particle 

radii and directly related to the particle stiffness. The second equation shows an inverse 

square relation and a direct relation between the expected tensile strength of the particle 

assembly and the particle radii and normal bond strength, respectively.

5.3.7 Parallel-Bond Behavior

A parallel bond approximates the physical behavior of a cement-like substance lying 

between and joining the two bonded particles. Parallel bonds establish an elastic 

interaction between particles that acts in parallel with the slip or contact-bond constitutive 

models. A schematic idealization of parallel bond is showing in Figure 13.

Figure 13 Idealization of Parallel bond in PFC3D
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A parallel bond is defined by five parameters, namely the normal stiffness ‘kn’, shear 

stiffnesses ‘ks’, normal strength ‘σC’, shear strength ‘τC’ and bond radius, R. When either 

‘σ’ or ‘τ’ exceeds the corresponding strength, the bond breaks.

The relation between the stiffnesses ( nk ) and the modulus (EP) of the parallel-bond 

material are 

L

E
k Pn = …………………….…………….. (3)

SCC ==τσ ………………………….… (4)

where ‘L’  and ‘S’ are the bond length between the two particles in contact and the 

compressive strength of aerogel as determined from experiments respectively. 

The values of parallel-bond normal and shear strengths, σC and τC, are specified in stress 

units. Thus, there is a direct one-to-one correspondence between parallel-bond strengths 

and material strengths. Recollect that a parallel bond can carry load in bending. The 

bending strength does not enter directly into the parallel-bond formulation. Instead, 

bending load contributes to the maximum fiber stress carried by the bond, and can thus 

induce a normal-mode failure. The bending-load contribution scales as bond radius.
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Figure 14 Flow chart of the numerical modeling process
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 Uniaxial Compression

Uniaxial compression experiments were conducted on crosslinked silica aerogel. A strain 

rate of 0.0035s-1 was used in all compression tests. Figure 15 shows the average stress-

strain data for crosslinked silica aerogel specimens under compressive loading at room 

temperature. Data for individual samples, and average values with their standard 

deviations are summarized in Table 1. The compressive strength data for plain silica 

aerogels are given in Table 2 for comparison. 

Figure 15 Stress-strain curve in unaxial compression on crosslinked silica aerogel
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Sample 
Number

Density (gm/cc) Compressive
Strength (MPa)

Failure Strain 
(%)

Young’s 
Modulus (MPa)

1 0.48 190.33 77.22 122.85
2 0.47 222.08 77.04 119.58
3 0.48 168.55 77.2 126.27
4 0.48 173.72 76.1 135.27
5 0.48 173.20 78.35 138.94

Average 0.478±0.004 185.58±22.02 77.18±0.78 128.58±8.23

Table 1 Compressive strength data of isocyanate crosslinked silica aerogels.

Sample Number Density (gm/cc) Compressive 
Strength (MPa)

Failure Strain
(%)

Young’s 
Modulus (MPa)

1 0.18 4.0 5.31 96.7
2 0.20 4.1 6.00 86.9

Average 0.190±0.014 4.1±0.07 5.66±0.49 91.8±6.9

Table 2 Compressive strength data of plain silica aerogels.

Figure 16 Silica aerogel sample shattering into pieces at failure

Figure 16 shows the snapshot of the crosslinked silica aerogel sample at failure. As seen 

from recorded images of sample at different stages of compression, the specimen did not 

exhibit significant lateral dilatation (the Poisson ratio is only 0.18) and did not buckle in 

compression. At failure, the outer layer of all samples shattered and fell away, while all 
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remaining cores, have the same height, indicating that failure is due ultimately to lateral 

tensile stresses even though the applied load is compressive. The average load at failure 

for the five specimens tested was 12065 lbs.  Both the strain at failure and the 

compressive strength of the crosslinked silica aerogel are considerably higher than those 

of native (uncrosslinked) aerogels, which have a compressive strength of only 4.1±0.1 

MPa. By comparison, crosslinking has increased failure strain by a factor of 13.5, and 

increased the compressive strength by a factor of 45. Nevertheless, assuming a power law 

dependence of the yield strength (σs) on density (ρ), σs = ρα it is calculated from the 

strength data of Tables 1 and 2 that α=4.14. 

Table 3 compares the absolute and specific compressive strengths of crosslinked aerogels 

with other materials. The specific compressive strength of crosslinked aerogels is higher 

than that of steel, aluminum 6061 T-6, fiberglass, and is comparable to that of aerospace 

grade graphite composite. The stress at which failure of the composites due to matrix 

failure or the yielding of metals occurred was used to compute the specific compressive 

strength.

Material Density
(g/cc)

Compressive Strength 
(Mpa)

Specific Compressive 
Strength (Nm/Kg)

E-glass epoxy* 1.94 550 283000
Kevlar-49 epoxy* 1.30 280 215000

T 300 epoxy* 1.47 830 564000
VSB-32 epoxy* 1.63 690 423000
GY-70 epoxy* 1.61 620 385000

2024 T3 Al 2.87 345 120000
7075T6 2.80 475 169000

4130 steel 7.84 1100 140000
CSA 0.48 186 389000

* Fiber volume fraction Vf =0.6

Table 3 Comparison of specific compressive strength of crosslinked silica aerogels 
with various materials
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Young’s modulus in compression was evaluated from the slope of the initial linear part 

(at <4% strain) of the stress-strain curve. The compressive Young’s modulus of the 

crosslinked aerogel is 129±8 MPa compared to 92±7 MPa of the plain silica aerogel.  

But, the elastic part of the stress-strain curve has other similar characteristics with the 

stress-strain curve of the underlying native silica framework as well: it extends up to ~5 

MPa and ~4% strain, while the native silica framework fails at 4.1±0.1 MPa and 

5.7±0.9% strain. These data seem to suggest that at small strains the mechanical behavior 

of the composite material, at the specific silica to polymer ratio, is shaped by the stiffer 

silica framework, while at higher strains, the behavior of the material under compression 

is controlled by the porous polymer network.  That realization should be reflected in the 

recovery (spring-back) behavior of the material during loading-unloading cycles along 

the stress-strain curve.  Indeed, a typical cylindrical sample was loaded and unloaded six 

times, first in the elastic region where deformation is completely recovered as shown in 

Figure 17. 

Figure 17 Loading -unloading on crosslinked silica aerogel
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Then it was unloaded and reloaded in the plastic region where a hysteresis loop was 

always observed, presumably due to energy loss because of slipping of polymer chains. It 

is further noted that the percent strain recovery becomes progressively lower at higher 

strains, while in the inelastic hardening range (~60% strain) there is practically no strain 

recovery. Beyond 60% strain, the behavior is analogous to a granular material. The 

changes in the morphology of the material under compression were evaluated by SEM 

(Figure 18) and porosity/surface area analysis (Table 4). For this, samples were loaded up 

to a predetermined strain and subsequently the load was removed and the samples were 

analyzed.  Curiously, under SEM, the material does not show any appreciable difference 

from its original state up to at least 45% strain. Surface area analysis, however, showed 

unambiguously that as the degree of plastic deformation increases, the surface area 

decreases and the average pore diameter increases, consistently with loss of mesoporosity 

as particles are squeezed closer to one another permanently.  Ultimately, at failure (77% 

strain), the SEM shows clear signs of gradual collapse, i.e., a loss of porosity, which is 

supported by surface area analysis.

Strain (%) BET Surface Area (m2 g-1) Average Pore Diameter (nm)

0 261 9.7
30 197 15.2
45 152 169
77 6 a

    a. low c-value (5.22)

Table 4 Surface area analysis along compression of crosslinked silica aerogels

(Courtesy- NASA GRC)
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Figure 18 SEM images of the morphological changes after compression in 
crosslinked silica aerogel specimen loaded at different percent strain 

(a) 30% - No appreciable change in mesoporous structure 

(b) 45% - Gradual decrease in the mesoporosity, few dark spots. 

(c) 77% - Appreciable loss of porosity, particles are squeezed closer to one another
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Finally, the effects of the strain rate and temperature on the compressive strength were 

both evaluated.  Figure 19 shows stress-strain curves at three compressive strain rates, 

0.0035s-1, 0.035s-1 and 0.35s-1, tested at room temperature (21°C).  The stress-strain 

curve at 0.0035 s-1, is an average for total of five specimen tested. For the tests at high 

strain rates, 0.035s-1 and 0.35s-1
, two samples each were tested and the average curve was 

plotted. A good reproducibility of data at each strain rate was observed, with the 

maximum deviation of less than 1%. There was a gradual increase in Young’s modulus, 

with an increase in strain rate. The Young’s modulus data are 128MPa, 160MPa and 

205MPa at strain rates 0.0035s-1, 0.035s-1, and 0.35s-1, respectively. The strain rate was 

varied by a factor of 100, yet the overall stress-strain curves did not change significantly, 

indicating that increased strain rate does not have a deleterious effect on the energy-

absorption behavior of crosslinked aerogels under compression within the range of strain 

rates tested. 

Figure 19 Effect of strain rate on the behavior of crosslinked silica aerogel 

under uniaxial compression
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Figure 20 shows the stress-strain curves for crosslinked aerogel samples in compression 

testing at various temperatures. The mechanical response is essentially invariant of the 

temperature in the range between 21 ºC and –55 º. However, the material stiffens 

significantly (the elastic modulus increases to 450 MPa) and suffers premature 

compressive failure at cryogenic temperatures (e.g., –196 oC).

Figure 20 Effect of temperature on the behavior of crosslinked silica aerogel 

under uniaxial compression

6.2 Flexural Testing

Figure 21 shows the results for three-point bending tests. As the specimen length was 

small compared to the height of the specimen, shear deformation was taken into account 

in the load point deflection. The Young’s modulus was calculated from the formula 

derived in Appendix A. The formula was derived from energy approach by considering 

both, bending as well as shear deformation. The modulus of Elasticity (E) was obtained 

from the formula for load- point deflection, and is given as follows 
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Where, I is the area moment of inertia, P is the applied load, L is the length of beam span, 

∆ is the load-point deflection, ν  is the Poisson’s ratio and h is the thickness. Therefore, 

knowing the applied load, and measuring the load-point deflection (∆) directly from the 

crosshead displacement of the Instron machine, the Young’s modulus was calculated. 

There was some variation in the Young’s modulus, as computed using Equation 5, at 

various load-point displacements.  An average value of Young’s modulus was calculated 

and used in plotting the bending stress-strain data in Figure 21.

Table 5 shows the results for three-point bending on CSA specimens at different 

temperatures. The bending stress-strain curves at room temperature (21°C) and at 

cryogenic temperature (-196°C) are shown in Figure 21. The curves are linear with an 

average flexural modulus of 167 MPa at room temperature and 360 MPa at cryogenic 

temperature (-196 °C).

Figure 21 Three point bend tests on crosslinked silica aerogel
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The flexural modulus at –196 °C is almost double that at room temperature, and the 

flexural strength (~11 MPa) showed a slight increase, thereby confirming the capability 

of CSA to sustain bending loads at cryogenic temperatures. 

Figure 22 shows the load-deflection curves for crosslinked silica aerogel at 180 °C. As 

seen from the figure, the curves are nonlinear. There was considerable variation in both, 

load and deflection data. Equation 5 was not used for calculating the flexural modulus, as 

it’s only applicable for small deformations in linear elastic region. The failure loads and 

deflections are tabulated in Table 5.

Figure 22 Load-Deflection curves for crosslinked silica aerogel at 180 °°°°C
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Temperature
Failure 
Load
(kg)

Square 
Dimm.
(mm)

Failure 
Disp. 
(mm)

Young’s 
Modulus

(MPa)

Flexural 
Strength 
(MPa)

1 (21º C) 21.93 13.9 1.90 181 11.99

2 (21º C) 19.15 13.9 1.77 160 10.48

3 (21º C) 15.18 13.7 1.58 160 8.67

Average (21º C) 18.75 167 10.38

4 (-196º C) 20.6 13.5 0.855 360 11.50
5 (-196º C) 17.8 13.8 0.558 517 10.6

Average (-196º C) 19.2 438.5 11.05

6 (-180º C) 15.93 13.0 1.68 --- ---

7 (-180º C) 23.29 12.8 2.77 --- ---

8 (-180º C) 17.16 13.1 3.94 --- ---

Average (-180º C) 18.79 --- ---

Table 5 Results for three-point bending on crosslinked silica aerogel

6.3 Numerical modeling of compression experiments in PFC3D

Figure 23 shows the cluster structure generated using the DLCA algorithm. The 

algorithm generates particles according to a Gaussian distribution function, with 

parameters used to generate the cluster summarized in Table 6. The DLCA code output 

gives the radius of the each particle and its location in 3D space, which is subsequently 

supplied to the PFC3D input file. The bounds of the cell size were chosen so as to have a 

cell size as large as possible, without compromising computational efficiency, and 

minimizing code run time. A total of 2400 particles were generated, with a aerogel 

porosity of 71.92 %.



www.manaraa.com

48

Figure 23 Cluster structure generated using DLCA algorithm

Parameter Value

Cell size, L 1000 Å

Number of particles, N 1200

Mean particle size, r0 75 Å

Standard deviation, σ 25 Å

Diffusion parameter, α -0.55

Step size, ∆ 30 Å

Table 6 Parameters used in the DLCA algorithm

Once the model is setup it is calibrated using the procedure described in Section 5.3, the 

values of the normal and shear particle stiffness are estimated using equation 1. The 

expected Young’s modulus of the particle-particle contact (micro-modulus) is equated to 

the actual modulus (macro-modulus) estimated from the compression experiment i.e. 

128Mpa. The value for R is chosen as the average radius of particles, i.e. 35nm. Using 
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these values the initial normal and shear stiffness is estimated to be 18N/m. The parallel 

bond stiffness, knp, was calculated using equation 3. The Young’s modulus of the parallel 

bond was taken same as the experimental compressive modulus, which was then divided 

by the length of bond between the two particles in contact. Using Ep=128 MPa and the 

length of the bond to be 70nm the estimated knp is 1.83×1015 N/m. The shear bond 

stiffness ksp is taken to be same as the normal bond stiffness. The values for normal and 

shear bond strengths is equal to the failure strength of the assembly i.e. 190MPa

Figure 24 shows the calibration curve for the normal particle stiffness.  The compressive 

modulus varies with the normal particle stiffness from which a relationship, which is 

approximately linear, is observed as predicted by equation 1.  Also the particle stiffness is 

related to the strength of the model. Figure 25 shows the calibration curve for 

compressive strength at 77% with the normal particle stiffness. The micro-mechanical 

parameter values determined from calibration curves and used in the uniaxial loading 

simulations, and are summarized in table 7.  Though the structural and other parameters 

such as bond strength and stiffness remained unchanged the calibration curve does not 

show a perfectly linear elastic behavior as expected from the equation (1). The reason, for 

this discrepancy, is that the level of equilibrium achieved from PFC3D simulations show a 

change as the particle stiffness was varied, thereby affecting Young’s modulus.
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Figure 26 Stress-strain curves from experiment and simulation of compression

Table 7 Parameters used in PFC3D simulation

Value Units
BALL PARAMETERS
Density 480 kg/m3

Normal stiffness 135 N/m
Shear stiffness 130 N/m
Friction 0.6
BOND PARAMETERS
Radii 3.50X10-8 .m
Normal stiffness 1.82 X1015 N/m
Shear stiffness 1.82 X1015 N/m
Normal strength 190 X106 MPa
Shear strength 190 X106 MPa
WALL PARAMETERS
Normal stiffness 1 X1010 N/m
Shear stiffness 1 X1010 N/m
Wall disp 0.2 X10-10 .m
POROSITY 79.82 %
STRUCTURE PARAMETERS
Type of distribution Gaussian
mean dia of ball 7.5 X10-9 .m
Deviation 2.50 X10-9 .m
Cell size (1X1X2) X10-7 .m
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PFC3D can be used in a fully predictive mode where enough data of high quality are 

available or it can be used as a numerical laboratory to test design ideas in a data limited 

system. Most of the development on aerogel modeling in this study is based on limited 

available data. The most important factor is the structure of the numerical specimen as 

PFC3D models are categorized as direct, damage-type numerical models in which the 

deformation is not a function of prescribed relationships between stresses and strains, but 

of changing microstructure.  Small changes in structure can bring about large changes in 

the failure mechanism of the model. In this study the DLCA algorithm was used to 

generate the loop structure, which is very important to account for the stiffness of the 

aerogel. It can be seen from Figure 23 that there is an abundance of dead-ends in the 

aerogel network. Dead ends are clusters connected to the backbone of the aerogel at only 

one point. Figure 27 is a snapshot of the uniaxial compression simulation at 40% strain. 

Figure 27 Uniaxial compression simulation of aerogel at 40 % strain
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As seen from the figure the failure of the model is not similar to what is expected from 

the experiments, with few particles separating from the core assembly.  These particles 

are the ones contributing to the dead ends. As the load increases, the bond between the 

particles with the cluster structure held by a single contact breaks which makes these 

particles to break from the core assembly. The dead-ends do not contribute to the 

stiffness of the model, which can be seen from the nature of the stress strain curve. 

Moreover, the model is not in a desired state of equilibrium because of the very high 

porosity (70-80%). At such high porosity, there are very few contacts with neighboring 

particles, which tends to allow particles to be in a state of continuous motions. . Figure 28

is a snapshot of the uniaxial compression simulation at 77% strain

Figure 28 Uniaxial compression simulation of aerogel at 77 % strain

Sensitivity Study

Sensitivity analysis was performed on the numerical model by varying one parameter at a 

time. The key parameters affecting the behavior of the model were identified, by 

performing trial runs. The effects of the identified key parameters on the behavior of 

simulation curves are described in the following paragraphs. The particle stiffness is the 

most important parameter affecting the nature of the curve. Figure 29 shows the effect of 



www.manaraa.com

54

increase in ball stiffness (both normal and shear stiffness assumed equal) on the stress-

strain behavior of the model.

Figure 29 Effect of change in stiffness of particles on behavior of simulation model

As the stiffness of the particle is increased, both the Young’s modulus and the strength of 

the model, at 77% strain, increases with a relationship, which is approximately linear as 

shown in Figures 22 & 23.

The particle stiffnesses were then altered in different ratios to study the effects between 

them. Figure 30 shows the effect of particle normal stiffness (kn) held constant at 140 

N/m while the particle shear stiffness (kp) being varied. As seen there is little effect of on 

the strength at 77% strain. Whereas, there is a significant change in the behavior of stress 

strain curves when the particle shear stiffness (kp) was hel constant at 140 N/m and the 

particle normal stiffness (kn) varied. As this ratio of shear to normal particle stiffness 

increases the curve shifts upwards as seen in Figure 31
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Figure 30 Effect of change in normal stiffness of particles (ks=140 N/m =constant) on 
behavior of simulation model

Figure 31 Effect of change in shear stiffness of particles (kn=140 N/m =constant) on 
behavior of simulation model

The effect of particle coefficient of friction (µ) on the nature of stress strain curve was 

studied by varying µ in the range 0.01 to 1.0. With increase in particle coefficient of 
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friction the curve shift upwards i.e. the slope of the stress-strain curve in the granular 

region increases as shown in Figure 32. This is attributed to the predominance of slip 

model once the bonds in the model have broken. As the coefficient of friction increase 

more force is required to compress the balls and hence the increase in slope in the 

granular region. 

Figure 32 Effect of change in particle friction coefficient on behavior of 

simulation model

Surprisingly there is a little effect of increase in particle density on the nature of the curve

as shown in Figure 33. With increase in particle density the strength at 77% strain 

increases marginally. 
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Figure 33 Effect of change in particle density (kg/m3) on behavior of 

simulation model.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Basic mechanical characterization experiments of uniaxial compression and flexure 

were conducted on crosslinked silica aerogel.  The findings are as follows.

• The compressive strength of crosslinked silica aerogel is greatly improved from 5 

MPa to 128 MPa as compared with plain silica aerogels, without much sacrifice in 

the density.  The specific compressive strength is higher than the conventional 

material and comparable to that of aerospace grade graphite-epoxy composite 

laminates. 

• Aerogels exhibits a scaling relationship of relative strength against relative 

density. The scaling exponent was determined to be 4.14, higher compared to the 

value reported in literature in the range 3 to 3.5.

• A numerical model (PFC3D) was developed as a first step towards modeling of 

silica aerogels. The aerogel network structure was found to be an important factor 

affecting the failure mechanism.  Good agreement between the experimental and 

numerical stress-strain curve were observed.
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Future work

• An algorithm needs to be developed, that will eliminate the dead-end particles or 

transform the dead-end particles to form loops.

• Failure mechanisms in PFC3D are sensitive to the model structure. Even if the 

dead-ends modifying algorithm is developed, the data for porosity of model will 

increase the reliability of the input parameters, which at present are assumed.  The

porosity of crosslinked silica aerogel can be measured by a technique such as 

nitrogen adsorption/desorption.

• Modeling of three point bending and tensile specimens needs to be addressed. 

This will increase the confidence of the quantitative parameters obtained from 

compression simulation. Parallel processing option should be employed to model 

the three point bending simulations which will have large size.
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APPENDIX A

The samples tested in three-point bending had small spans and therefore the effect of 

shear needs to be accounted in the point-load deflection 
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